f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gsc

NAG C Library Function Document
nag zhptrd (f08gsc)

1 Purpose

nag_zhptrd (f08gsc) reduces a complex Hermitian matrix to tridiagonal form, using packed storage.

2 Specification

void nag_zhptrd (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex apl[],
double d[], double e[], Complex tau[], NagError xfail)

3 Description

nag_zhptrd (f08gsc) reduces a complex Hermitian matrix A, held in packed storage, to real symmetric
tridiagonal form T by a unitary similarity transformation: A = QTQ".

The matrix () is not formed explicitly but is represented as a product of n — 1 elementary reflectors (see
the f08 Chapter Introduction for details). Functions are provided to work with () in this representation (see
Section 8).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if uplo = Nag Upper, the upper triangular part of A is stored;
if uplo = Nag_Lower, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: ap[dim] — Complex Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: the Hermitian matrix A, packed by rows or columns. The storage of elements a;; depends
on the order and uplo parameters as follows:
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if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +4 — 1], for i < j;

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 41 — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,

a;; is stored in ap[(2n — i) x (i —1)/2 4 j — 1], for i < j;

if order = Nag_RowMajor and uplo = Nag Lower,
a;; is stored in ap[(i — 1) x i/2 4 j — 1], for i > j.

On exit: A is overwritten by the tridiagonal matrix 7" and details of the unitary matrix Q.

5: d[dim] — double
Note: the dimension, dim, of the array d must be at least max(1,n).

On exit: the diagonal elements of the tridiagonal matrix 7'

6: e[dim] — double
Note: the dimension, dim, of the array e must be at least max(1,n — 1).
On exit: the off-diagonal elements of the tridiagonal matrix 7.

7: tau[dim] — Complex
Note: the dimension, dim, of the array tau must be at least max(1,n — 1).
On exit: further details of the unitary matrix Q).

8: fail — NagError *

The NAG error parameter (see the Essential Introduction).

6  Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

Output

Output

Output

Output

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please consult NAG for assistance.

7  Accuracy
The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
1Ell, < c(n)ellAll,,

¢(n) is a modestly increasing function of n, and e is the machine precision.

The elements of 7' themselves may be sensitive to small perturbations in A or to rounding errors in the

computation, but this does not affect the stability of the eigenvalues and eigenvectors.
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8 Further Comments

The total number of real floating-point operations is approximately %n%

To form the unitary matrix () this function may be followed by a call to nag_zupgtr (f08gtc):
nag_zupgtr (order,uplo,n,ap,tau,&q,pdq,&fail)

To apply @ to an n by p complex matrix C' this function may be followed by a call to nag_zupmtr
(f08guc). For example,

nag_zupmtr (order,Nag_LeftSide,uplo,Nag_NoTrans,n,p,ap,tau,&c,
pdc,&fail)

forms the matrix product QC.
The real analogue of this function is nag_dsptrd (f08gec).

9 Example

To reduce the matrix A to tridiagonal form, where

—2.28 4+ 0.00¢ 1.78 —2.03¢ 22640.10c —0.1242.53¢
1.78 +2.03¢ —1.12 +0.00¢ 0.01 +0.43: —1.07 4 0.86¢
2.26 —0.10¢ 0.01 —0.43: —0.37 + 0.00¢ 231 —-0.92¢ |’

—0.12 —2.53: —1.07 — 0.86¢ 2314092 —0.73 4 0.00¢

A:

using packed storage.

9.1 Program Text

/* nag_zhptrd (f08gsc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)

{
/* Scalars *x/
Integer i, j, n, ap_len, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
Complex #*ap=0, *tau=0;
double *d=0, #*e=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]

#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08gsc Example Program Results\n");
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/* Skip heading in data file */
Vscanf ("$*[*\n] ");

Vscanf ("%1d%*["\n] ", &n);
ap_len = n*(n+l)/2;

d_len = n;

e_len = n-1;

tau_len = n-1;

/* Allocate memory */

if ( !(ap = NAG_ALLOC(ap_len, Complex))
1 (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_len, double)) ||
I (tau = NAG_ALLOC(tau_len, Complex

)) )

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf (" ' %1s ’s*["\n] ", uplo_char);
if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
¥
if (uplo == Nag_Upper)
{

for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
{
Vscanf (" ( %1f , %1f ) ", &A_UPPER(i,]j).re,
&A_UPPER(1i,7).im);
}
¥
Vscanf ("sx[*\n] ");

}

else

for (3 = 1; j <= 1i; ++3)

Vscanf (" ( %1f , %1f ) ", &A_LOWER(i,]j).re,
&A_LOWER(i,j).im) ;
}
¥
Vscanf ("sx["\n] ");
}

/* Reduce A to tridiagonal form =*/
f08gsc(order, uplo, n, ap, d, e, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08gsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print tridiagonal form */
Vprintf ("\nDiagonal\n") ;
for (i = 1; i <= n; ++i)
Vprintf ("%9.4£f%s", d[i-1], i%8==0 2"\n":" ");
Vprintf ("\nOff-diagonal\n");
for (1 =1; 1 <= n - 1; ++1)
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Vprintf ("%9.4f%s",
Vprintf ("\n") ;

eli-17,

END:
if (ap) NAG_FREE (ap);
if (d) NAG_FREE(4d);

if (e) NAG_FREE (e);

if (tau) NAG_FREE (tau);

return exit_status;

9.2 Program Data

f08gsc Example Program Data
4

i%8==0 ?"\n":"

’ U ’
(-2.28, 0.00) ( 1.78,-2.03) ( 2.26, 0.10) (
(-1.12, 0.00) ( 0.01, 0.43) (
(-0.37, 0.00) (
(
9.3 Program Results
f08gsc Example Program Results
Diagonal
-2.2800 -0.1285 -0.1666 -1.9249
Off-diagonal
-4.3385 -2.0226 -1.8023

u)_

f08gsc

7

:Value of N
:Value of UPLO

:End of matrix A
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