f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gsc

NAG C Library Function Document
nag zhptrd (f08gsc)

1 Purpose

nag_zhptrd (f08gsc) reduces a complex Hermitian matrix to tridiagonal form, using packed storage.

2 Specification

void nag_zhptrd (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex apl[],
double d[], double e[], Complex tau[], NagError xfail)

3 Description

nag_zhptrd (f08gsc) reduces a complex Hermitian matrix A, held in packed storage, to real symmetric
tridiagonal form T by a unitary similarity transformation: A = QTQ".

The matrix () is not formed explicitly but is represented as a product of n — 1 elementary reflectors (see
the f08 Chapter Introduction for details). Functions are provided to work with () in this representation (see
Section 8).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if uplo = Nag Upper, the upper triangular part of A is stored;
if uplo = Nag_Lower, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

4: ap[dim] — Complex Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: the Hermitian matrix A, packed by rows or columns. The storage of elements a;; depends
on the order and uplo parameters as follows:

[NP3645/7] f08gsc.1

f08gsc NAG C Library Manual

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +4 — 1], for i < j;

if order = Nag_ColMajor and uplo = Nag_Lower,
a;; is stored in ap[(2n — j) x (j —1)/2 41 — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,

a;; is stored in ap[(2n — i) x (i —1)/2 4 j — 1], for i < j;

if order = Nag_RowMajor and uplo = Nag Lower,
a;; is stored in ap[(i — 1) x i/2 4 j — 1], for i > j.

On exit: A is overwritten by the tridiagonal matrix 7" and details of the unitary matrix Q.

5: d[dim] — double
Note: the dimension, dim, of the array d must be at least max(1,n).

On exit: the diagonal elements of the tridiagonal matrix 7'

6: e[dim] — double
Note: the dimension, dim, of the array e must be at least max(1,n — 1).
On exit: the off-diagonal elements of the tridiagonal matrix 7.

7: tau[dim] — Complex
Note: the dimension, dim, of the array tau must be at least max(1,n — 1).
On exit: further details of the unitary matrix Q).

8: fail — NagError *

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

Output

Output

Output

Output

An internal error has occurred in this function. Check the function call and any array sizes. If the

call is correct then please consult NAG for assistance.

7 Accuracy
The computed tridiagonal matrix T is exactly similar to a nearby matrix A + E, where
1Ell, < c(n)ellAll,,

¢(n) is a modestly increasing function of n, and e is the machine precision.

The elements of 7' themselves may be sensitive to small perturbations in A or to rounding errors in the

computation, but this does not affect the stability of the eigenvalues and eigenvectors.

f08gsc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gsc

8 Further Comments

The total number of real floating-point operations is approximately %n%

To form the unitary matrix () this function may be followed by a call to nag_zupgtr (f08gtc):
nag_zupgtr (order,uplo,n,ap,tau,&q,pdq,&fail)

To apply @ to an n by p complex matrix C' this function may be followed by a call to nag_zupmtr
(f08guc). For example,

nag_zupmtr (order,Nag_LeftSide,uplo,Nag_NoTrans,n,p,ap,tau,&c,
pdc,&fail)

forms the matrix product QC.
The real analogue of this function is nag_dsptrd (f08gec).

9 Example

To reduce the matrix A to tridiagonal form, where

—2.28 4+ 0.00¢ 1.78 —2.03¢ 22640.10c —0.1242.53¢
1.78 +2.03¢ —1.12 +0.00¢ 0.01 +0.43: —1.07 4 0.86¢
2.26 —0.10¢ 0.01 —0.43: —0.37 + 0.00¢ 231 —-0.92¢ |’

—0.12 —2.53: —1.07 — 0.86¢ 2314092 —0.73 4 0.00¢

A:

using packed storage.

9.1 Program Text

/* nag_zhptrd (f08gsc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>

int main(void)

{
/* Scalars *x/
Integer i, j, n, ap_len, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
Complex #*ap=0, *tau=0;
double *d=0, #*e=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]

#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08gsc Example Program Results\n");

[NP3645/7] f08gsc.3

f08gsc NAG C Library Manual

/* Skip heading in data file */
Vscanf ("$*[*\n] ");

Vscanf ("%1d%*["\n] ", &n);
ap_len = n*(n+l)/2;

d_len = n;

e_len = n-1;

tau_len = n-1;

/* Allocate memory */

if (!(ap = NAG_ALLOC(ap_len, Complex))
1 (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_len, double)) ||
I (tau = NAG_ALLOC(tau_len, Complex

)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf (" ' %1s ’s*["\n] ", uplo_char);
if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
¥
if (uplo == Nag_Upper)
{

for (i = 1; i <= n; ++1i)
{
for (j = 1i; j <= n; ++3)
{
Vscanf (" (%1f , %1f) ", &A_UPPER(i,]j).re,
&A_UPPER(1i,7).im);
}
¥
Vscanf ("sx[*\n] ");

}

else

for (3 = 1; j <= 1i; ++3)

Vscanf (" (%1f , %1f) ", &A_LOWER(i,]j).re,
&A_LOWER(i,j).im) ;
}
¥
Vscanf ("sx["\n] ");
}

/* Reduce A to tridiagonal form =*/
f08gsc(order, uplo, n, ap, d, e, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08gsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Print tridiagonal form */
Vprintf ("\nDiagonal\n") ;
for (i = 1; i <= n; ++i)
Vprintf ("%9.4£f%s", d[i-1], i%8==0 2"\n":" ");
Vprintf ("\nOff-diagonal\n");
for (1 =1; 1 <= n - 1; ++1)

108gsc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Vprintf ("%9.4f%s",
Vprintf ("\n") ;

eli-17,

END:
if (ap) NAG_FREE (ap);
if (d) NAG_FREE(4d);

if (e) NAG_FREE (e);

if (tau) NAG_FREE (tau);

return exit_status;

9.2 Program Data

f08gsc Example Program Data
4

i%8==0 ?"\n":"

’ U ’
(-2.28, 0.00) (1.78,-2.03) (2.26, 0.10) (
(-1.12, 0.00) (0.01, 0.43) (
(-0.37, 0.00) (
(
9.3 Program Results
f08gsc Example Program Results
Diagonal
-2.2800 -0.1285 -0.1666 -1.9249
Off-diagonal
-4.3385 -2.0226 -1.8023

u)_

f08gsc

7

:Value of N
:Value of UPLO

:End of matrix A

[NP3645/7]

f08gsc.5 (last)

	f08gsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	d
	e
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

